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ABSTRACT

Objective: To characterize Alexander disease (AxD) phenotypes and determine correlations with
age at onset (AAO) and genetic mutation. AxD is an astrogliopathy usually characterized on MRI
by leukodystrophy and caused by glial fibrillary acidic protein (GFAP) mutations.

Methods: We present 30 new cases of AxD and reviewed 185 previously reported cases. We
conducted Wilcoxon rank sum tests to identify variables scaling with AAO, survival analysis to
identify predictors of mortality, and �2 tests to assess the effects of common GFAP mutations.
Finally, we performed latent class analysis (LCA) to statistically define AxD subtypes.

Results: LCA identified 2 classes of AxD. Type I is characterized by early onset, seizures, macroceph-
aly, motor delay, encephalopathy, failure to thrive, paroxysmal deterioration, and typical MRI features.
Type II is characterized by later onset, autonomic dysfunction, ocular movement abnormalities, bulbar
symptoms, and atypical MRI features. Survival analysis predicted a nearly 2-fold increase in mortality
among patients with type I AxD relative to those with type II. R79 and R239 GFAP mutations were
most common (16.6% and 20.3% of all cases, respectively). These common mutations predicted
distinct clinical outcomes, with R239 predicting the most aggressive course.

Conclusions: AAO and the GFAP mutation site are important clinical predictors in AxD, with clear
correlations to defined patterns of phenotypic expression. We propose revised AxD subtypes, type I
and type II, based on analysis of statistically defined patient groups. Neurology® 2011;77:1287–1294

GLOSSARY
AAO � age at onset; AxD � Alexander disease; CNMC � Children’s National Medical Center; GFAP � glial fibrillary axial
protein; IRB � institutional review board; LCA � latent class analysis.

Alexander disease (AxD)1 often presents as a progressive astrogliopathy caused by dominant
mutations in the glial fibrillary acidic protein (GFAP) gene.2 Pathogenic mutations are thought
to confer cytotoxicity through gain-of-function mechanisms.3,4

Three age-dependent clinical subtypes—infantile, juvenile, and adult— have been ad-
opted.5–7 Infantile AxD (birth to 2 years) is characterized by developmental delay, seizures,
megalencephaly, and progressive deterioration, with increased severity in neonatal patients.8

Juvenile AxD (2–14 years of age) is characterized by hyperreflexia, bulbar symptoms, and
ataxia, with preserved motor and cognitive function and milder progression than the infantile
form. Adult AxD (late adolescence and beyond) has been described as being similar to the
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juvenile form9 and is characterized by bulbar
symptoms, ataxia, palatal myoclonus, and
spastic paraparesis.

Early efforts to characterize age-dependent
subtypes preceded the discovery of the role of
GFAP in AxD. The availability of GFAP se-
quencing has increased diagnostic accuracy
across the lifespan, and patient samples have
grown to allow statistical analysis of the rela-
tionships between age at onset (AAO), the
GFAP genotype, and clinical outcomes.

In this study, we reviewed the clinical, ra-
diologic, and genetic features of 215 patients
with AxD. We explored clinical outcomes as a
function of AAO and GFAP mutation site,
with emphasis on the most commonly af-
fected amino acid residues, R79 and R239. In
an effort to statistically characterize AxD sub-
types, we used latent class analysis (LCA) to
isolate clinically coherent patient groups with
similar disease outcomes and investigated
group difference in AAO and frequency of
common GFAP mutations.

METHODS Standard protocol approvals, registra-
tions, and patient consents. Histories of 215 patients with
GFAP-confirmed AxD were examined according to an institu-
tional review board (IRB)–approved protocol. Informed consent
was obtained from 30 unpublished patients evaluated and se-
quenced at Children’s National Medical Center (CNMC) with
complete histories, imaging, and GFAP sequencing (appendix
e-1 on the Neurology® Web site at www.neurology.org; for de-
tailed patient information, see table e-1). In accordance with
IRB regulations, we retrospectively analyzed data from 185 cases
previously described in the literature (57 published patients with
complete histories and imaging from collaborating physicians
and 128 patients identified in the literature).

Clinical and radiologic outcome measures. Data sought
included gender, AAO, survival, birth history, presence of ante-
cedent encephalopathy or developmental delay at diagnosis (mo-
tor and cognitive development 25% delayed for age or clinical
description consistent with this measure), seizures, failure to
thrive (lack of normal height and weight gains), frequent emesis,
bulbar symptoms (dysphonia, dysarthria, or dysphagia), motor
disturbance, autonomic dysfunction (orthostatic hypotension,
sphincter dysfunction, or urinary tract dysfunction), sleep distur-
bance, and history of paroxysmal deterioration (acute worsening
associated with infection or trauma). On physical examination,
macrocephaly (head circumference greater than 2 SD above nor-
mal for age and gender), ocular movement abnormalities, bulbar
symptoms, palatal myoclonus, spasticity, dystonia, chorea, and
ataxia were recorded. Summary scores for seizures, encephalopa-
thy, bulbar symptoms, autonomic dysfunction, and motor dys-
function were generated and included all subjects with
presentation or history of relevant phenotypes.

Where available (162 subjects), MRI findings were reviewed
for AxD typical characteristics,10 including frontal predominance

of white matter abnormalities, periventricular rim of low signal

on T2/high signal on T1, signal abnormalities of basal ganglia or

thalami, brainstem abnormalities, and contrast enhancement in

the periventricular region, ventricular lining, frontal white mat-

ter, optic chiasm, brainstem, dentate nucleus, cerebellar cortex,

fornix, basal ganglia, or thalami. Patients with available radio-

logic data who did not present with at least 4 of these 5 criteria

were considered to have atypical radiologic presentations.10

Review of case histories from the literature. A literature

review targeted all published GFAP mutation–positive confirmed

cases of AxD and was conducted in PubMed for articles published

between January 2001 and July 2009 using GFAP and Alexander

disease as search criteria, identifying 67 studies.2,6,11–40,e1-e35 Letters

were sent to study authors, and detailed histories were re-

ceived for 57 patients. Histories were coded to extract pa-

tients’ AAO, age at the time of study or patient’s death,

presence or absence of clinical and radiologic features detailed

above, and location of GFAP mutation.

Statistical analysis. Statistical analysis was performed using

Stata (StataCorp, College Station, TX). To assess the relation-

ship between AAO and clinical data, Wilcoxon rank sum tests

were performed for each clinical and radiologic variable, and

survival analysis was performed on all subjects with known val-

ues for AAO and last known age or age of death (n � 171).

Logistic regressions were conducted with phenotypic variables

against mutated GFAP exons and protein domains. The high

frequency of R79 and R239 mutations permitted �2 analyses for

patients with these mutations to identify associated phenotypes.

To eliminate orthogonality, patients carrying these mutations

were removed and exon by phenotype logistic regression was

repeated.

Finally, LCA was conducted in MPlus (Muthén & Muthén,

Los Angeles, CA)e36 to analyze clinical patterns. LCA is a person-

centered, probability-based test for heterogeneous subpopula-

tions in a target population.e36-e38 This model accommodates

unequal degrees of variance for each cluster and can be tested

using formal statistical approaches. Seven dichotomous variables

judged to represent the phenotypic spectrum of AxD were in-

cluded (seizures, autonomic dysfunction, encephalopathy, bul-

bar symptoms, history of paroxysmal deterioration, palatal

myoclonus, and typical/atypical MRI). We limited our selection

of variables to clinical parameters that may be expressed across

the lifespan to avoid a definitional bias in our selection of vari-

ables. For example, macrocephaly, a predictor of early-onset

AxD, was not included because it is not seen in older individuals.

Gait disturbance, which predicts late-onset AxD, was not in-

cluded because infantile patients would not express this trait by

definition.

First, various LCA models were explored and compared, and

Bayesian information criterione38,e39 and Lo-Mendel-Rubin

likelihood ratio testse40 were used to optimize the number of

classes. Phenotypic variables were then classified into their most

likely classes by estimated posterior probabilities, and quality of

membership classification was assessed by average posterior

probabilities and the entropy statistic. The prevalence of each

class and the conditional probable incidence of each phenotypic

variable in each class were assessed. In addition, we conducted

post hoc analyses of onset age and incidence of R79 and R239

mutations across classes. Finally, we performed a Mantel-Cox

survival analysis and Cox regression-based test for equality of

survival curves to determine median survival periods and mortal-

ity rate ratios across classes.
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RESULTS AAO predicts clinical and radiologic
phenotypes. Clinical and radiologic features varied
with AAO. The following clinical features predicted
early onset: presentation with seizures, febrile sei-
zures, motor delay, and cognitive delay; history of
failure to thrive and paroxysmal deterioration; devel-
opment of seizures and encephalopathy; and physical
examination finding of macrocephaly. In some cases,
such as motor and cognitive delay, these findings are
probably consistent with the age at presentation.
Clinical phenotypes predicting late onset were pre-
sentation with bulbar symptoms and autonomic dys-
function, development of autonomic dysfunction
and gait disturbance, and physical examination find-
ings of ataxia, dysarthria, dysphonia, ocular move-
ment abnormalities, and palatal myoclonus (figure
1A, table e-2A). We did not replicate prior findings
of male predominance in juvenile cases.e2

Among radiologic features, early onset was associ-
ated with typical MRI features and with each crite-
rion individually, except brainstem abnormalities.
Late onset predicted atypical MRI features that were
characterized most commonly by predominance of
posterior fossa white matter abnormalities, brainstem
atrophy, cerebellar atrophy, and spinal cord atrophy
(figures 1B and e-1, table e-2B).

GFAP mutation analysis. GFAP mutations were iden-
tified in exon 1 (45.5% of cases), exon 3 (3.3% of
cases), exon 4 (27.2% of cases), exon 5 (1.8%
of cases), exon 6 (16.0% of cases), exon 7 (�1% of
cases), and exon 8 (7.5% of cases). No mutations
have been identified in exons 2 and 9. These muta-
tions were distributed across the following GFAP do-
mains: N-terminal head domain (�1% of cases), coil
1A (43.7% of cases), coil 1B (4.2% of cases), linker
12 (�1% of cases), coil 2A (23.7% of cases), linker 2
(�1% of cases), coil 2B (13.0% of cases), and
C-terminal tail (13.5% of cases). No mutations have
been identified in the linker 1 region, and small sam-
ple sizes for linker 12 and linker 2 mutations pre-
cluded genotype-phenotype analysis for these
regions. Within the CNMC sample, 7 novel muta-
tions were identified (table 1). A total of 78 unique
GFAP mutations causing amino acid changes in the
coding region of the gene have been identified (table
e-3). In addition, 43.6% of mutations occurred in
CpG methylation sites, accounting for 68.7% of
cases.

Mutations occurred disproportionately at resi-
dues R239 (20.3% of cases) and R79 (16.6% of
cases). The next most common mutations affected
R88 (7.9% of cases) and R416 (5.6% of cases). Thus,
more than half (50.7%) of subjects had mutations at
1 of these 4 residues. All other mutations occurred in
fewer than 4% of cases.

R79 mutations predicted early onset (mean � SE
1.90 � 0.70; figure e-2) and increased presentation
with seizures, febrile seizures, motor delay, cognitive
delay, and development of gait disturbances relative
to patients with non-R79 mutations (table e-4A).
R239 mutations also predicted early onset (1.00 �
0.12; figure e-2), presentation with seizures, febrile
seizures, motor delay, and cognitive delay; develop-
ment of seizures, focal motor complaints, and en-
cephalopathy; and a history of frequent emesis,
failure to thrive, and paroxysmal deterioration (table
e-4B). Contrary to prior findings,e2 R239 mutations
did not segregate by gender. However, R239H
patients presented earlier (0.48 � 0.14 years; p �
0.007, 2-tailed t test) than R239C patients (1.28 �
0.17 years), although no phenotypic differences were
found among these patients. Similar analyses of R88
and R416 patients did not identify significant
genotype-phenotype correlation nor was either mu-
tation associated with AAO (R88: p � 0.210; R416:
p � 0.692). When R79 and R239 patients were ex-
cluded, no variables localized to individual GFAP ex-
ons, whereas failure to thrive, frequent emesis, and
encephalopathy remained associated with coil 2A
mutations (n � 7, p � 0.05, logistic regression).

LCA. Bayesian information criterion and Lo-Mendel-
Rubin likelihood ratio tests indicated that the 2-class
model optimally fit the data and that it was superior to
both the 1-class and 3-class models (table 2). Within the
2-class model, average posterior probabilities of correct
class membership assignment were high: 0.96 for class 1
and 0.90 for class 2, significantly higher than the cutoff
value of 0.70.e41 Further, the entropy value of 0.772
indicates that the 2-class model provides clear
classificationse42,e43 (table 3).

On the basis of the pattern of conditional proba-
bilities for each phenotypic variable (table e-5), we
define class 1 as type I AxD, with increased likeli-
hood of seizures, encephalopathy, paroxysmal deteri-
oration, and typical MRI features and class 2 as type
II AxD, with increased likelihood of autonomic dys-
function, bulbar symptoms, and palatal myoclonus.
Post hoc �2 tests of physical examination findings vs
class membership further revealed that type I is associ-
ated with macrocephaly (p � 0.001) and that type II is
associated with ocular movement abnormalities (p �
0.005).The estimated prevalence rate of types I and II
AxD (i.e., the probabilities of being assigned to specific
latent classes) were 60% and 40%, respectively.

AAO and incidence of common GFAP mutations
varied across the latent classes. Patients with type I
AxD showed earlier onset (1.74 � 0.29 years; p �
0.0001, 2-tailed t test) and higher incidence of R79
(0.25 on average; p � 0.0001, LCA) and R239 (0.31
on average; p � 0.0001, LCA) mutations. Patients
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with type II AxD showed later onset (21.64 � 2.35
years; p � 0.0001, 2-tailed t test) and relative paucity
of R79 (0.08 on average; p � 0.0001, LCA) and
R239 (0.04 on average; p � 0.0001, LCA) mutations
(figure e-3, A and B).

Finally, survival analysis revealed significant dif-
ferences in postonset survival periods between pa-
tients with type I and type II AxD (for Kaplan-Meier
survival curves, see figure e-4). Mantel-Cox compar-

ison revealed a mortality rate ratio of 1.93 for type I
AxD (n � 108) relative to type II AxD (n � 63),
with a median survival of 14.0 � 1.8 years for type I
and 25.0 � 2.1 years for type II. Relative hazards
assigned by a Cox regression-based test for equality
of survival curves were 1.51 for type I and 0.62 for
type II (p � 0.0063). The survival differences be-
tween patients with type I and type II AxD remained
significant when R79 and R239 cases were removed

Figure 1 Age at onset (AAO) associated with Alexander disease (AxD) clinical outcomes

Mean AAO for clinical (A) and radiologic (B) features showing significant association with AAO. In B, the 4 of 5 MRI criteria are from van der Knaap et al.10: Frontal
predominance, frontal predominance of white disturbances; Periventricular rim, periventricular rim of low signal on T2/high signal on T1; Basal ganglia/thalamus:
signal abnormality of basal ganglia or thalamus; Contrast enhancement: contrast enhancement in periventricular region, ventricular lining, frontal white matter,
optic chiasm, brainstem, dentate nucleus, cerebellar cortex, fornix, basal ganglia, or thalami. The fifth van der Knaap criterion, brainstem abnormalities, did not
show significant age effects and is not displayed. Bars represent mean AAO among individuals with positive identification of clinical/radiologic feature, error bars
represent � 1 SEM. All comparisons were significant at the p � 0.01 level. For additional statistics, see table e-2, A and B.
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from the analysis. The mortality rate ratio was 1.98
for patients with type I (n � 46) relative to type II
AxD (n � 54), with a median survival of 17.3 � 3.6
years for type I and 25.0 � 1.9 years for type II.
Relative hazards were 2.11 for type I and 0.68 for
type II (p � 0.015)

DISCUSSION We confirm that AAO is, in itself, a
powerful predictor of phenotypic patterns and dis-
ease course in AxD. Our findings offer statistical sup-
port to past studies demonstrating age-dependent
variation in the clinical features of AxD5–8,e2,e17 but
highlight the need for revisions to the precise defini-
tion of clinical subtypes. LCA model fitting was ro-

bustly significant for 2 patient classes but failed to
converge on a 3-class model, suggesting that AxD is
characterized by 2, not 3, clinical subtypes.

Importantly, our LCA model did not include age
as a variable, and assessment of age differences across
patients with type I and type II AxD was conducted a
posteriori to test the validity of previously defined
age constructs. Post hoc analysis revealed onset age
differences across the 2 identified classes, with pa-
tients with type I AxD tending to present within the
first 4 years of life and patients with type II AxD
presenting across the lifespan. With the exception of
ataxia and dysphagia, each age-sensitive outcome
measure identified by rank-sum test was differen-
tially expressed across type I and type II AxD. In
addition, both R79 and R239 mutations showed
higher prevalence within patients with type I relative
to type II AxD. Taken together, these data converge
on a clinical portrait of 2 phenotypically distinct vari-
ants of AxD (table 4). Type I AxD is characterized by
early AAO, seizures, encephalopathy, paroxysmal de-
terioration, failure to thrive, developmental delay,
and hallmark radiologic features. In contrast, type II
AxD manifests across the lifespan and is character-

Table 1 Novel GFAP mutations in
CNMC cohorta

Base pair
change

Amino
acid
change Exon

Protein
domain

c.211 G>A R66Q 1 Coil 1A

c.228 G>A E72K 1 Coil 1A

c.270 A>G K86E 1 Coil 1A

c.721 A>C K236T 4 Coil 2A

c.1125 G>C E371Q 6 Coil 2B

c.1126 A>T E371V 6 Coil 2B

c.1140 C>G R376G 6 C terminus

Abbreviations: CNMC � Children’s National Medical Center;
GFAP � glial fibrillary axial protein.
a Novel coding changes were considered pathogenic if they
were not detected in control or parental samples and if clin-
ical features were consistent with disease. A unique muta-
tion (R66Q) was detected in one deceased patient for whom
parental testing was not possible, but Alexander disease di-
agnosis was confirmed by Rosenthal fibers on brain biopsy.
In all other patients parental testing determined that the
mutation was pathogenic and de novo.

Table 2 LCA model estimation: Significance
values for model estimations
stipulating 1, 2, and 3 latent classes

LCA model comparison (n � 198)a

Model BICb LMR LRT p valuec

One-class 1,270.32

Two-class 1,196.74 �0.0001

Three-class 1,221.11 0.1497

Abbreviations: BIC � Bayesian information criterion; LCA �

latent class analysis; LMR LRT � Lo-Mendell-Rubin likeli-
hood ratio test p value for K � 1 classes.
a Model estimation in LCA is conducted by stipulating one
latent class for the dataset and iteratively stipulating addi-
tional classes (i.e., 1, 2, 3, etc.) until the model no longer pro-
vides a significant fit for the data. The highest number of
classes that fits the data is used for subsequent analyses.
b A smaller BIC indicates a better model fit.
c A low p value indicates that the K � 1 class model has to
be rejected in favor of a model with at least K classes.

Table 3 LCA results: class assignment
probabilities and entropy

Class assignment
probability (n � 198)a

Type I Type II

Type I (n � 118) (59.6%) 0.96 0.04

Type II (n � 80) (40.4%) 0.10 0.90

Entropy 0.77

Abbreviation: LCA � latent class analysis.
a Probability values index the likelihood of accurate classifi-
cation within the model. Values exceeding 0.7 are consid-
ered a high quality of fit.

Table 4 Common features of type I and
type II AxD

Type I AxD Type II AxD

Early age at onset (often
before 4 years)

Manifests across the
lifespan

Seizures Autonomic dysfunction

Macrocephaly Bulbar symptoms

Encephalopathy Ocular movement
abnormalities

Paroxysmal deterioration Palatal myoclonus,

Failure to thrive Often negative for
neurocognitive or
developmental deficits

Developmental delay Atypical radiologic
features

Classic radiologic features10

Abbreviation: AxD � Alexander disease.
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ized by autonomic dysfunction, bulbar symptoms,
ocular movement abnormalities, and palatal myoclo-
nus and is largely without neurocognitive or develop-
mental deficits. It has been suggested that juvenile
and adult AxD subtypes share common features,9,e2

and our findings suggest that these forms are indeed
not clinically distinct, both fitting well in the model
of type II AxD.

It is important to note that despite the high qual-
ity of fit, our LCA model predicts trends and does
not allow for type classification in each case with ab-
solute certainty. Post hoc cluster analysis of our LCA
findings suggests that type I AxD tends to manifest
by age 4 and that type II tends to manifest beyond
age 4. These age cutoffs, however, are not definitive,
and age must be considered in the context of clinical,
radiologic, and genetic data before a definitive type
assignment can be made. Of the 113 patients with
age data that LCA assigned to type I, 12 presented
after age 4. Likewise, of the 72 patients assigned to
type II, 20 presented at or before age 4. Although it is
possible that some early-onset cases assigned to type
II had not developed the full complement of clinical
manifestations at the time of case report and that
further monitoring would have revealed a more type
I–like clinical pattern, many unambiguously fell into
the type II category. Overall these results suggest that
AxD clinical manifestations occur along a spectrum
of severity and type and that this spectrum is closely
associated with AAO.

Our findings support prior suggestions that sever-
ity is increased in early-onset AxD relative to postin-
fantile presentations,8 with survival analysis revealing
reduced median survival and nearly a 2-fold increase
in relative incidence of mortality among patients
with type I relative to type II.

Most GFAP mutations occur with low frequency
throughout the coding region. We found, however,
that more than half of all patients had mutations af-
fecting 1 of 4 amino acids in the GFAP peptide se-
quence (R79, R88, R239, and R416). The frequency
of these mutations highlights the potential utility of
screening for mutations affecting these residues, pre-
empting whole-gene sequencing in many individuals
with suspected cases. We confirm prior genotype-
phenotype correlation studies of R79 and R239
mutations2,e19 but failed to find an association of
clinical features with R88 or R416. Novel mutations
continue to be identified and we have identified 7
novel GFAP mutations within the 30 patients evalu-
ated at CNMC (table 1).

Studies have identified AxD-causing mutations
throughout the GFAP coding region and suggested
that their pathogenicity may arise from various
mechanisms.e44-e47 R239 mutations predict severe

manifestations and affect the coil 2A domain of
GFAP. Preliminary analysis of clinical variance across
GFAP domains suggests that coil 2A may be particu-
larly sensitive to genetic insult. Non-R239 mutations
in the coil 2A domain predicted features robustly as-
sociated with R239 mutations, although the limited
sample size highlights the need for confirmation in
future studies. We failed to identify a previously re-
ported association between coil 2B mutations and a
markedly fulminant course.e2 It is possible that our
analysis lacked the resolution to isolate phenotypic
associations within specific regions of each domain.
Targeted analysis with larger sample sizes may reveal
statistically robust associations between phenotypes
and particular disruptions in GFAP structure.

Despite robust genotype-phenotype correlation
for R79 and R239, other mutations do not associate
with defined phenotypes. Nearly half of patients
studied carry a mutation occurring in 5 or fewer
cases. Given the low prevalence of AxD, analyses of
these infrequent mutations will be underpowered for
a considerable period of time. In addition, until re-
cently, the clinical heterogeneity type II AxD re-
duced diagnostic accuracy, and this form is probably
underrepresented in the literature. A cluster of muta-
tions associated with late onset has been identified in
a region spanning coil 1B and coil 2A.e44 Whereas
our findings do not identify type II–associated muta-
tions, future studies may reveal genetic signals associ-
ated with this subtype.

Overall, these findings confirm AAO and R79/
R239 genotype as powerful predictors of clinical
manifestations and outcomes in AxD. We propose
revisions to subtype classification that reflect the lack
of statistical distinction between juvenile and adult
forms. Although each case of AxD must be consid-
ered in the unique context of the patient’s clinical
history, we believe that high-throughput screening
for common mutations in patients with suspected
cases can improve diagnostic efficiency and that type
I/type II AxD categorization affords a statistically
sound predictive clinical tool.
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